Question	Expected answers	Marks
1 (a)	Amino acids (1).	1
1 (b)	 1 mark for structure of organic ion and 1 mark for charge on amino group (2); 1 mark for chloride ion alone (1).	3
1 (c) (i)	Asymmetric carbon atom / chiral centre (carbon atom)/ carbon bonded to/ with AW 4 different atoms/groups (1).	1
1 (c) (ii)	Correct 3D structural formula for one enantiomer(1); Mirror images (1).	2
1 (d) (i)	 1 mark for one COOH group and one NH_{2} group structure in molecule (1); 1 mark for rest correct for either structure (1).	2
1 (d) (ii)	 1 mark for correct group (1).	1
1 (e) (i)	One mark each for points in bold and then any two others up to a total of 5 marks: Reaction/AW takes place at active site; active sites have specific shapes / enzyme contain hole or cleft with specific shape; due to the tertiary structure of the enzyme / way it folds; only one of the enantiomers will fit in the active site AW; interactions between arginine and active site weaken bonds; activation energy is lowered; high temperatures cause intramolecular forces to break and active site is lost; at low temperatures rate is slow since activation energy is not often reached.	5
1 (e) (ii)	Rate $=\mathrm{kx} \times$ [arginine] \times [enzyme] 1 mark for [arginine] and [enzyme] (1); 1 mark for rest correct (1); $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$ (1).	3

1 (e) (iii)	rate will not alter/rate does not depend on (1); as concentration (of arginine) increases/ concentration (of arginine) (1) AW.	2
	Total mark	20

Question	Expected answers	Marks
2 (a) (i)	Carbon (1).	1
2 (b (i)	$\mathrm{Fe} \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{e}^{-}$ Correct formulae for seactant and product (1); electrons balanced correctly and on RHS (1).	2
2 (b) (ii)	$\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}$ Correct formulae reactants and product (1); electrons and formulae balanced correctly and on LHS (1). Allow halved/doubled equation	2
2 (b) (iii)	Arrow correct direction (1); arrow only shown in steel (1).	2
2 (b) (iv)	Oxygen/air (concentration) is lower at A than B/ora (1).	1
2 (c)		3
2 (d) (i)	metals connected to voltmeter only (1); correct solutions (1); salt bridge (1).	3
2 (d) (ii)	0.78 V (1).	1

2 (d) (iii)	$\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Fe}(\mathrm{s}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$ Correct formulae (1); state symbols correct, allow for reverse reaction (1).	2
2 (d) (iv)	(Standard) electrode potential for Fe/Fe(II) is more negative than $\mathrm{Cu} / \mathrm{Cu}(\mathrm{II})$ ora (1); means Fe is a stronger reducing agent than Cu ora / electrons will flow from Fe (atoms) to Cu(II) (ions) (1); additional/more AW Fe is converted into Fe(II) ions (and hence rust) (1).	3
Rust layer no longer flaky/ layer adheres (more strongly) to steel /impermeable AW (1).	1	
	Total mark	$\mathbf{2 1}$

Question	Expected answers	Marks
3 (a) (i)	One mark each for points in bold and then any two others up to a total of 5 marks: Dissolve the sample in the minimum amount AW (1); of hot ethanol (1); " filter (off any solid impurities) (1); leave (solution/filtrate) to cool/to form crystals (1); filter off crystals/decant solution (1); wash crystals and dry (1). QWC At least two readable and clear sentences with no more than one spelling, punctuation or grammatical error (1).	6
3 (a) (ii)	Broad peak/absorbance around $3100 \mathrm{~cm}^{-1}$ indicates $\mathbf{O H}$ (in carboxylic acid) (1); Strong peak/absorbance around $1720 \mathrm{~cm}^{-1}$ indicates $\mathrm{C}=\mathrm{O}$ (in carboxylic acid) (1); hence $-\mathrm{COOH} /$ carboxylic acid (1). The first two marks are for identifying the two important peaks, however much detail is given. These may be shown on the spectrum.	3
3 (a) (iii)	 Correct molecular formula (1); correct structure, OH not allowed (1).	2
3 (a) (iv)	M_{r} of acetaminophen =151.0 (1); mass of pure acetaminophen in sample $=0.010 \times 151.0$ i.e mol $\times M_{r}$ ecf but not if wrong compound is used to calculate M_{r} (1); percentage $=(1.510 / 2.00) \times 100=75.5 \%$ ecf (1).	3
3 (b) (i)	Phenol/hydroxyl (1).	1
3 (b) (ii)	 negative ion formed by proton loss (1); correct structure (1).	2
3 (c) (i)	Iron(III) chloride in solution is yellow accept brown/ yellow or brown + orange/red (1); phenacetin remains yellow/brown/colour does not change ecf(1); acetaminophen turns purple/violet (1).	3

3 (c) (ii)	chemical shifts for acetaminophen type of proton relative intensity 4.5-10.0 (1) . only one peak otherwise no marks /phenolic OH chemical shifts for phenacetin type of proton relative intensity 3.6 0.8-1.2 (1) both peaks required $-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{R}$ $\mathrm{R}-\mathrm{CH}_{3}$ (1) both proton types required (1) for relative intensities	5
	Total mark	25

Question	Expected answers	Marks
4 (a) (i)	A molecule is eliminated (often water) in the reaction AW (1); A big molecule/long chain forms from smaller molecules/monomers AW (1) Do not accept 'polymer' for long chain etc.	2
4 (a) (ii)	 ester link correct (1); detail correct (1).	2
4 (a) (iii)		1
4 (b)	One mark each for the two points in bold and then any one other up to a total of 3 marks: Polymers have crystalline/ordered and amorphous areas (1); in flexible/thermoplastic polymers chains can move past each other (1); when temperature is lowered/ temperature drops below T_{g} / then chains/structure eventually become(s) 'frozen'/have less energy (1); intermolecular forces unable to be broken therefore chains can no longer slide past each other (1); if force is applied chains can't move so material breaks (1).	3
4 (d)	Use of copolymers/mixture of monomers (1); use of plasticisers/molecular lubricants (1).	2
	Total mark	10

Question	Expected answers	Marks
5 (a)	Variable oxidation states (1).	1
5 (b)		2
5 (c)	Octahedral (1).	1
5 (d) (i)	$K=\left[[\mathrm{Ni}(\mathrm{edta})]^{2-}(\mathrm{aq})\right] /\left[\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right]^{2+}(\mathrm{aq})\right] \times\left[\mathrm{edta}^{4}(\mathrm{aq})\right]\right.$ Everything correct (2); Wrong way round (1) or only powers incorrect (1).	2
5 (d) (ii)	Over to the right AW (1); $K_{\text {stab }}$ is a large number / greater than 1(1).	2
5 (d) (iii)	Increasing temperature moves equilibrium position to the left AW (1); less (hydrated) $\mathrm{Ni}(I I)$ ions are removed from solution/ less complex formed (1).	2
5 (e)	```Moles of edta solution = (Concentration x volume) 0.100 x 22.00/1000 (1); moles of edta = moles of Ni(II) (1); concentration of Ni(II) = 0.00220 x 1000/25.00 (1); =0.0880 / 8.80 < 10-2 3 sig figs (1).```	4
	Total mark	14

